Research Article | | Peer-Reviewed

Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists

Received: 30 November 2025     Accepted: 7 January 2026     Published: 16 January 2026
Views:       Downloads:
Abstract

We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50.

Published in Pure and Applied Mathematics Journal (Volume 15, Issue 1)
DOI 10.11648/j.pamj.20261501.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2026. Published by Science Publishing Group

Keywords

Elliptic Curves, Mordell-Weil Rank, Rank-zero, Congruent Numbers, Rank Lifting, Unit Circle (Parametrizatation)

References
[1] L. Mordell, On the rational solutions of the indeterminate equation y2 - k = x2, Proceedings of the London Mathematical Society, 1922.
[2] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, 1986.
[3] Swinnerton-Dyer, H. P. F., and Birch, B. J. “Notes on elliptic curves. I..” Journal für die reine und angewandte Mathematik 212 (1963): 7-25.
[4] Swinnerton-Dyer, H. P. F., and Birch, B. J. “Notes on elliptic curves. II..” Journal f¨ur die reine und angewandte Mathematik 218 (1965): 79-108.
[5] N. Elkies, Curves of high rank with a point of order 2, International Congress of Mathematicians, 2006.
[6] N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank, arXiv. 0709 [math. NT] 18 sep 2007.
[7] N. D. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion, The Open Book Series 4 (2020) Fourteenth Algorithmic Number Theory Symposium.
[8] J. -F. Mestre,Construction de courbes elliptiques de rang ≥ 11, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 13–16.
[9] A. Dujella, Construction of high rank elliptic curves, preprint 2007,
[10] O. Lecacheux, Familles de courbes elliptiques à rang é levé sur ℚ(t), J. Théorie des Nombres Bordeaux, 12(1), 2000, 245–259.
[11] K. K. Vincent and S. K. Fousséni, Two Parametric Families of Congruent Numbers From Elliptic Curves With Quadratic Point Imposition, JP Journal of Algebra, Number Theory and Applications, 64(6), 2025, 777-790.
[12] J. B. Tunnell, A classical diophantine problem and modular forms of weight 3/2, Inventiones Mathematicae 72 (1983), 323-334
[13] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, GTM 106, 2009.
[14] P. Khanra, The Congruent Number Problem and its Connection with Elliptic Curves, ResearchGate F eb. 2024,
[15] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1997.
[16] J. Coates and A. Wiles, On the Conjecture of Birch and Swinnerton-Dyer. Inventiones mathematicae, 1987.
[17] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, Vol. 97, Springer-Verlag, 1993.
[18] SageMath 9.3, Available online at:
Cite This Article
  • APA Style

    Vincent, K. K., Fousséni, S. K. (2026). Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists. Pure and Applied Mathematics Journal, 15(1), 1-5. https://doi.org/10.11648/j.pamj.20261501.11

    Copy | Download

    ACS Style

    Vincent, K. K.; Fousséni, S. K. Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists. Pure Appl. Math. J. 2026, 15(1), 1-5. doi: 10.11648/j.pamj.20261501.11

    Copy | Download

    AMA Style

    Vincent KK, Fousséni SK. Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists. Pure Appl Math J. 2026;15(1):1-5. doi: 10.11648/j.pamj.20261501.11

    Copy | Download

  • @article{10.11648/j.pamj.20261501.11,
      author = {Kouakou Kouassi Vincent and Soro Kolo Fousséni},
      title = {Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists
    },
      journal = {Pure and Applied Mathematics Journal},
      volume = {15},
      number = {1},
      pages = {1-5},
      doi = {10.11648/j.pamj.20261501.11},
      url = {https://doi.org/10.11648/j.pamj.20261501.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20261501.11},
      abstract = {We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50.
    },
     year = {2026}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Rank Lifting From Rank-Zero Elliptic Curves Via Quadratic Twists
    
    AU  - Kouakou Kouassi Vincent
    AU  - Soro Kolo Fousséni
    Y1  - 2026/01/16
    PY  - 2026
    N1  - https://doi.org/10.11648/j.pamj.20261501.11
    DO  - 10.11648/j.pamj.20261501.11
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20261501.11
    AB  - We prove that rank-zero elliptic curves over generate positive-rank elliptic curves through the unit circle, via quadratic twisted models . This construction demonstrates rank evolution from zero to infinite rational points, complementing high-rank families. All rank-zero status and positive-rank emergence rigorously verified computationally. SMC(2020): 11G05, 14H52, 11Y50.
    
    VL  - 15
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Applied Fundamental Sciences Department, Nangui ABROGOUA University, Abidjan, Ivory Coast

  • Mathematics and Computer Science Department, Alassane Ouattara University, Bouak´e, Ivory Coast

  • Sections