Archive
2020, Volume 9
2019, Volume 8
2018, Volume 7
2017, Volume 6
2016, Volume 5
2015, Volume 4
2014, Volume 3
2013, Volume 2
2012, Volume 1




Volume 3, Issue 3, June 2014, Page: 66-69
A Note on Localization of Supplemented Modules
Esra Öztürk, Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics 55139, Kurupelit-Samsun, Turkey
Şenol Eren, Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics 55139, Kurupelit-Samsun, Turkey
Received: Mar. 4, 2014;       Accepted: Jun. 27, 2014;       Published: Jul. 10, 2014
DOI: 10.11648/j.pamj.20140303.12      View  2956      Downloads  161
Abstract
In this paper we study on commutative rings with identity and all modules are unital left R-modules unless otherwise stated. We define the concept of small submodules for localization modules and additionally, we present the relation between an R-module M and an R_p-localization module M_p for all maximal ideals of R in view of being supplemented.
Keywords
Small Submodule, Supplemented Module, Multiplicative Closed Set, Localization Module
To cite this article
Esra Öztürk, Şenol Eren, A Note on Localization of Supplemented Modules, Pure and Applied Mathematics Journal. Vol. 3, No. 3, 2014, pp. 66-69. doi: 10.11648/j.pamj.20140303.12
Reference
[1]
Alizade, R., Pancar, A., 1991. Homoloji Cebire Giriş, Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi, Samsun.
[2]
Anderson, F.W., Fuller K.R., 1974, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin.
[3]
Çallıalp, F., Tekir, Ü., 2009. Değişmeli Halkalar ve Modüller, Birsen Yayınevi, İstanbul.
[4]
Faith, C., 1976, Algebra II: Ring Theory, Springer- Verlag, Berlin.
[5]
Hungerford, T.W., 1973. Algebra, Springer-Verlag, New York.
[6]
Lam, T. Y., Lectures on modules and rings, ser. Graduate texts in Mathematics. New York: Springer, 1999, vol. 189.
[7]
Larsen, M.D., McCarthy, P.J., 1971. Multiplicative Theory of Ideals, Academic Press, New York and London.
[8]
Moore, D.G., 1968. Prime and Radical Submodules of Modules over Commutative Rings, Vol.30, No.10, 5037-5064.
[9]
Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, ser. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1990, vol. 147.
[10]
Sharpe, D.W., Vamos, P., 1972. Injective Modules, Cambridge University Press.
[11]
Taşçı, D., 2007. Soyut Cebir, Alp Yayınevi, Ankara.
[12]
Northcott, D.G., 1968. Lessons on Rings, Modules and Multiplicity, Cambridge University Press.
[13]
J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, 2006. Lifting Modules, Supplements and projectivity in module theory, Front. Math., Birkhauser Verlag, Basel.
[14]
Wisbauer, R., 1991. Foundations of Module and Ring Theory, Gordon and Breach (Philadelphia).
[15]
Shang, Y. On the ideals of commutative local rings, Kochi Journal of Mathematics, 2013, vol. 8, 13--17.
Browse journals by subject