Archive
2020, Volume 9
2019, Volume 8
2018, Volume 7
2017, Volume 6
2016, Volume 5
2015, Volume 4
2014, Volume 3
2013, Volume 2
2012, Volume 1




Volume 9, Issue 3, June 2020, Page: 64-69
Some Separate Quasi-Asymptotics Properties of Multidimensional Distributions and Application
Nenad Stojanovic, Department of Mathematics, Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
Received: Jun. 17, 2020;       Accepted: Jul. 3, 2020;       Published: Jul. 13, 2020
DOI: 10.11648/j.pamj.20200903.13      View  155      Downloads  44
Abstract
Quasi-asymptotic behavior of functions as a method has its application in observing many physical phenomena which are expressed by differential equations. The aim of the asymptotic method is to allow one to present the solution of a problem depending on the large (or small) parameter. One application of asymptotic methods in describing physical phenomena is the quasi-asymptotic approximation. The aim of this paper is to look at the quasi-asymptotic properties of multidimensional distributions by extracted variable. Distribution T(x0,x) from S'(Ṝ+1×Rn) has the property of the separability of variables, if it can be represented in form T(x0,x)=∑φi(x0i (x) where distributions, φi(x0) from S'(Ṝ1) and ψi from S(Rn), x0 from Ṝ1+ and x is element Rn different values of do not depend on each other. Distribution T(x0,x) the element S'(Ṝ+1×Rn) is homogeneous and of order α at variable x0 is element Ṝ1+ and x=x1,x2,…,xn from Rn if for k>0 it applies that T(kx0,kx)=kα T(x0,x). The method of separating variables is one of the most widespread methods for solving linear differential equations in mathematical physics. In this paper, the results by V. S Vladimirov are used to present the proof of the basic theorems, regarding the quasi-asymptotic behavior of multidimensional distributions by a singular variable, with the application of quasi-asymptotics to the solution of differential equations.
Keywords
Distribution Spaces, Asymptotics, Separate Quasi-Asymptotics, Multidimensional Distributions
To cite this article
Nenad Stojanovic, Some Separate Quasi-Asymptotics Properties of Multidimensional Distributions and Application, Pure and Applied Mathematics Journal. Vol. 9, No. 3, 2020, pp. 64-69. doi: 10.11648/j.pamj.20200903.13
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
V. S. Vladimirov, N. Drozinov, B. I. Zavjalov, Mnogomernie Tauberovi Teoremi dlja Obobosce- nie funkcii, Nauka, Moskva, 1986.
[2]
N. Drozinov, B. I, Zavjalov, Vvedenie v teoriju oboboscenih funkcii, Mathematiceskij institut im V. A. Steklov, RAN (MIAN), Moskva. 2006.
[3]
S. Pilipović, B. Stanković, Vindas, J., Asymptotic behavior of generalizedfunctions, Series on Analysis, Applications and Computation, 5, World Sci-entific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[4]
S. Pilipović, J. Toft, P seudo-Differential Operators and Genera -lized Functions, Birkhäuser; 2015.
[5]
V. S. Vladimirov, Oboboscenie funkcii u matematice skoj fizici, Nauka, 1979.
[6]
N. Y. Drozhzhinov, B. I. Zav’yalov, Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubularcones. Izv. Math., 70, (2006), 1117–1164.
[7]
S. Pilipović, B. Stanković, Prostori distribucija, SANU, Novi Sad, 2000.
[8]
S. Pilipović, On the Quasiasymptotic of Schwartz distributions. Math. Nachr. 141 (1988), 19-25.
[9]
J. Vindas, S. Pilipović, Structural theorems for quasiasympto- tics of distributions at the origin, Math. Nachr. 282 (2.11), (2009), 1584–1599.
[10]
J. Vindas, The structure of quasiasymptotics of Schwartz distributions, Banach Center Publ. 88 (2010), 297-31.
[11]
S. Pilipović, Quasiasymptotic and the translation asymptotic behavior of distributions, Acta Math. Hungarica, 55 (3-4) (1990), 239-243.
[12]
V. S. Vladimirov, Uravnenija mathematiceskoj fiziki, Nauke, Moskva, 1981.
[13]
Teofanov, N., Convergence of multiresolution expansion in the Schwartzclass, Math. Balcanica, 20, (2006), 101-111.
[14]
S. Pilipović, B. Stanković, Asymptotic Behavior or Generalized Function, Novi Sad, 2008.
[15]
N. Stojanović, Separirana kvaziasimptotika više-dimenzionih distribucija, PMF, Novi Sad, 2009-magistarska teza.
[16]
M. Tomić, 'Jovan Karamata 1902-1967', Bulletin T. CXXII de l’Acad´emie Serbe des Sciences et des Arts, No 26, 2001.
Browse journals by subject