Special Issue on Spectral Theory of Multiparameter Operator Pencils and Its Applications

Submission Deadline: May 10, 2015

Please click the link to know more about Manuscript Preparation: http://www.pamjournal.org/submission

  • Lead Guest Editor
    • Rakhshanda Dzhabarzadeh
      Department of Functional Analysis, Institute of Mathematics and Mechanics, Nathional Academy of Sciencis of Azerbaijan, Baku, Azerbaijan
  • Guest Editor
    Guest Editors play a significant role in a special issue. They maintain the quality of published research and enhance the special issue’s impact. If you would like to be a Guest Editor or recommend a colleague as a Guest Editor of this special issue, please Click here to complete the Guest Editor application.
    • Ilgar Jafarov
      Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
  • Introduction

    Spectral theory of operators is one of the important directions of functional analysis. The spectral theory of operator pencils is raised as the result of study of the problems of ordinary differential equations with the boundary conditions. But the multiparameter spectral theory is raised in the result of the study of the problems of the partial differential equations and the equations of the mathematical physics.The physical sciences open more and more challenges for mathematicians. In particular, the research of the problems associated with the physical processes and, consequently, the study of partial differential equations and mathematical physics equations, required a new approach. The method of separation of variables in many cases turned out to be the only acceptable, since it reduces finding a solution to a complex equation with many variables to find a solution to a system of ordinary differential equations, which are much easier to study. For example, a multivariable problems cause problems in quantum mechanics, diffraction theory, the theory of elastic shells, nuclear reactor calculations , stochastic diffusion processes, Brownian motion, boundary value problems for equations of elliptic-parabolic type, the Cauchy problem for ultraparabolic equations and etc.

    Despite the urgency and prescription studies, spectral theory of multiparameter systems studied was not enough. The available results in this area until recently only dealt with seltadjoint multiparameter systems. Original research papers in this area will help further explored this actual direction of functional analysis.

    It is expected to pay more attention to the study of the particular case of nonlinear multiparameter systems of operators in the Hilbert space, namely, to the operator pencils and nonlinear algebraic systems with many variables.

    Aims and Scope:

    1. Spectral problem of multiparameter system
    2. Operator pencils in Hilbert space.
    3. Problem of completeness of eigen and associated vectors of multiparameter systems of operator pencils in Hilbert spaces.
    4. Nonlinear algebraic equations with many variables.
    5. Bases of eigen and associated vectors of multiparameter system.
    6. Application of results of multiparameter spectral theory.
    7. Fundamental notions of spectral theory of operators.

  • Guidelines for Submission

    Manuscripts can be submitted until the expiry of the deadline. Submissions must be previously unpublished and may not be under consideration elsewhere.

    Papers should be formatted according to the guidelines for authors (see: http://www.pamjournal.org/submission). By submitting your manuscripts to the special issue, you are acknowledging that you accept the rules established for publication of manuscripts, including agreement to pay the Article Processing Charges for the manuscripts. Manuscripts should be submitted electronically through the online manuscript submission system at http://www.sciencepublishinggroup.com/login. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal and will be listed together on the special issue website.

  • Published Papers

    The special issue currently is open for paper submission. Potential authors are humbly requested to submit an electronic copy of their complete manuscript by clicking here.