Classical Properties on Conformable Fractional Calculus
Musraini M.,
Rustam Efendi,
Endang Lily,
Ponco Hidayah
Issue:
Volume 8, Issue 5, October 2019
Pages:
83-87
Received:
3 September 2019
Accepted:
9 October 2019
Published:
23 October 2019
Abstract: Recently, a definition of fractional which refers to classical calculus form called conformable fractional calculus has been introduced. The main idea of the concept of conformable fractional calculus is how to determine the derivative and integral with fractional order either rational numbers or real numbers. One of the most popular definitions of conformable fractional calculus is defined by Katugampola which is used in this study. This definition satisfies in some respects of classical calculus involved conformable fractional derivative and conformable fractional integral. In the branch of conformable fractional derivatives, some of the additional results such as analysis of fractional derivative in quotient property, product property and Rolle theorem are given. An application on classical calculus such as determining monotonicity of function is also given. Then, in the case of fractional integral, this definition showed that the fractional derivative and the fractional integral are inverses of each other. Some of the classical integral properties are also satisfied on conformable fractional integral. Additionally, this study also has shown that fractional integral acts as a limit of a sum. After that, comparison properties on fractional integral are provided. Finally, the mean value theorem and the second mean value theorem are also applicable for fractional integral.
Abstract: Recently, a definition of fractional which refers to classical calculus form called conformable fractional calculus has been introduced. The main idea of the concept of conformable fractional calculus is how to determine the derivative and integral with fractional order either rational numbers or real numbers. One of the most popular definitions of...
Show More
About the Closed Quasi Injective S-Acts Over Monoids
Shaymaa Amer Abdul-Kareem,
Ahmed Amer Abdulkareem
Issue:
Volume 8, Issue 5, October 2019
Pages:
88-92
Received:
8 September 2019
Accepted:
15 October 2019
Published:
24 October 2019
Abstract: The aim of introducing and studying the notion of closed quasi injective S-act is to create a basis facilitate for the exchange ideas between module theory and act theory. As well as it represents a generalization of the quasi-injective act. The quasi-injective act was first introduced and studied by A. M. Lopez, Jr. and J. K. Luedeman, 1979. Then the author was one of the researchers which introduced several generalizations for this notion from several aspects because of its importance. More accurately, the contribution of this paper to the field of competence can be summarized into three points as follows: First: The possibilities for applying the topic of this article helps researchers about how can connect class of injectivity with its generalizations. Second: Study the topic of this article contributes to the improvement of the vision for finding the corresponding between acts theory and module theory. Third: This article has dealt with the important subject in the field of science and knowledge especially in algebra and can take it as a basis for future work for the researchers who work on algebra. Now, in this paper, the concept of closed quasi injective acts over monoids is introduced which represents a generalization of quasi injective. Several characterizations of this concept are given to show the behavior of the property of closed quasi injective. Relationship of the concept of closed quasi injective acts over monoids with Hopfian, co-Hopfian and directly finite property are considered. This work gives the answer to the question of what are the conditions to be met in the subacts in order to inherit the property of closed quasi injectivity. We obtained the main result in this direction in proposition (2.5) and proposition (2.6). A part of this paper was devoted to studying the relationship among the class of closed quasi injective acts with some generalizations of injectivity.
Abstract: The aim of introducing and studying the notion of closed quasi injective S-act is to create a basis facilitate for the exchange ideas between module theory and act theory. As well as it represents a generalization of the quasi-injective act. The quasi-injective act was first introduced and studied by A. M. Lopez, Jr. and J. K. Luedeman, 1979. Then ...
Show More