Hardy-Rogers Type Mappings for Fuzzy Metric Space
Mohit Kumar,
Ritu Arora,
Ajay Kumar
Issue:
Volume 8, Issue 6, December 2019
Pages:
93-99
Received:
23 July 2019
Accepted:
26 September 2019
Published:
24 December 2019
Abstract: The evolution of fuzzy mathematics commenced with the introduction of the notion of fuzzy set by Zadeh, where the concept of uncertainty has been introduced in the theory of sets in a non probabilistic manner. The several researchers were conducting the generalization of the concept of fuzzy sets. The present research paper focuses on the existence of fixed points in fuzzy metric space. Hardy-Rogers is to establish a fixed point theorem for three maps of a complete metric space. The contractive condition is generalized and the commuting condition of Jungck is replaced by the concept of weakly commuting. The three Hardy-Rogers type mappings are extended in fuzzy metric space and also extend to generalize non-expansive mapping define over a compact fuzzy metric space. The contractive condition is generalization of Hardy-Rogers and the commuting condition of Jungck is replace by the concept of weakly commuting. Our results deals with mappings satisfying a condition weaker than commutativity in complete fuzzy metric space and is the generalization in complete fuzzy metric space of Hardy-Rogers type mappings in complete metric space. We also provide some illustrative example to support our result. We apply also our main results to derive unique and common fixed point for contractive mappings.
Abstract: The evolution of fuzzy mathematics commenced with the introduction of the notion of fuzzy set by Zadeh, where the concept of uncertainty has been introduced in the theory of sets in a non probabilistic manner. The several researchers were conducting the generalization of the concept of fuzzy sets. The present research paper focuses on the existence...
Show More
Filter Banks from the Fibonacci Sequence
Fuxian Chen,
Qiuhui Chen,
Weibin Wu,
Xiaoming Wang
Issue:
Volume 8, Issue 6, December 2019
Pages:
100-105
Received:
21 October 2019
Accepted:
2 December 2019
Published:
31 December 2019
Abstract: Wavelet transform is an important quadratic representation in time-frequency domain of signals. The main advantage of wavelet transform is the time frequency localization as compared with the fourier transform. Due to the reason of dilation and translation operation acting the basic time-frequency atoms. Therefore a multi-resoloution analysis strategy is devoted to the construction of wavelet basis of L2(R), which also establishes a bridge between engineer and mathematics. The construction of wavelets is equivalent to the design of filter banks with complete reconstruction. In this note we investigate filter banks from the Fibonacci sequence. The draw back is that, the convergence z-transform is less than 1, hence it can not be used as filter. By adopting the Hadamard product of the Fibonacci sequence and a geometric sequence, a type of Fibonacci-based bi-orthogonal filter banks are constructed. This kind of filter banks are based two bricks: Bezout polynomials and the mask of the cardinal B-splines. These filters are essentially rational functions, which have potential applications in system identification and signal processing.
Abstract: Wavelet transform is an important quadratic representation in time-frequency domain of signals. The main advantage of wavelet transform is the time frequency localization as compared with the fourier transform. Due to the reason of dilation and translation operation acting the basic time-frequency atoms. Therefore a multi-resoloution analysis strat...
Show More