Comparison of Numerical Methods for System of First Order Ordinary Differential Equations
Issue:
Volume 9, Issue 2, April 2020
Pages:
32-36
Received:
17 January 2020
Accepted:
26 February 2020
Published:
14 April 2020
Abstract: In this paper three numerical methods are discussed to find the approximate solutions of a systems of first order ordinary differential equations. Those are Classical Runge-Kutta method, Modified Euler method and Euler method. For each methods formulas are developed for n systems of ordinary differential equations. The formulas explained by these methods are demonstrated by examples to identify the most accurate numerical methods. By comparing the analytical solution of the dependent variables with the approximate solution, absolute errors are calculated. The resulting value indicates that classical fourth order Runge-Kutta method offers most closet values with the computed analytical values. Finally from the results the classical fourth order is more efficient method to find the approximate solutions of the systems of ordinary differential equations.
Abstract: In this paper three numerical methods are discussed to find the approximate solutions of a systems of first order ordinary differential equations. Those are Classical Runge-Kutta method, Modified Euler method and Euler method. For each methods formulas are developed for n systems of ordinary differential equations. The formulas explained by these m...
Show More
Cohomology Operations andπ-Strongly Homotopy Commutative Hopf Algebra
Issue:
Volume 9, Issue 2, April 2020
Pages:
37-45
Received:
8 October 2019
Accepted:
4 December 2019
Published:
23 April 2020
Abstract: Steenrod operations are cohomology operations that are themselves natural transformations between cohomology functors. There are two distinct types of steenrod operations initially constructed by Norman Steenrod and called Steenrod squares and reduced p-th power operations usually denoted Sq and pi respectively. Since their creation, it has been proved that these operations can be constructed in the cohomology of many algebraic structures, for instance in the cohomology of simplicial restricted Lie algebras, the cohomology of cocommutative Hopf algebras and the homology of infinite loop space. Later on J. P. May developped a general algebraic setting in which all the above cases can be studied. In this work we consider a cyclic group π of oder a fixed prime p and combine theπ-strongly homotopy commutative Hopf algebra structure to the May’s approach with the aim to build these natural transformations on the Hochschild cohomology groups. Moreover we give under some conditions a link of these natural transformations with the Gerstenhaber algebra structure.
Abstract: Steenrod operations are cohomology operations that are themselves natural transformations between cohomology functors. There are two distinct types of steenrod operations initially constructed by Norman Steenrod and called Steenrod squares and reduced p-th power operations usually denoted Sq and pi respectively. Since their creation, it has been pr...
Show More